Third Quarter 2016

Newsletter

TEE PTC

Colymer Technology Center

	Mark Your Calendars!	
	Scratch Behavior of	Polymer Technology Industrial
In side the Neuraletter	Polymers Consortium-SCRATCH	<u>Consortium-PTIC</u>
Inside the Newsletter	October 5th-Troy, Michigan	October 13th — 14th
	From noon-4:30	College Station, TX
<u> Page 2 – 3</u>	after the TPO Conference	Texas A&M University
PTC Faculty Research		A
Highlights		
		to the Polymer Technology Industrial
Page 4	Formosa Plastics*	Consortium
		N
TAMU / PTC News		
Page 5-6	LEHVOSS technical	Please welcome the newest members to the APPEAL Materials Producers
SPE Student Chapter		Group
& PTC News		
	VICITEX	
	POLIMER TECHNOLOG	

TEXAS A&M ENGINEERING EXPERIMENT STATION Phone: (979) 458-0918 Website: http://ptc.tamu.edu The partnership between Kaneka, a Japanese-based chemical manufacturer, and the Texas A&M Engineering Experiment Station's (TEES) Polymer Technology Center (PTC) dates back to 1999. Kaneka first approached Dr. Hung-Jue Sue, TEES professor and director of PTC, about his research on improving the toughness of epoxy resin. The collaboration that followed was a success. Kaneka commercialized the product, which led to their current partnership.

капека

That partnership led to the establishment of the Kaneka U.S. Materials Research Center (KMR) on the Texas A&M campus in College Station in 2013. It was Kaneka's first corporate research and development center outside of Japan. Current research includes incorporating nanoparticles to improve polymer functionalities, improving nanoparticle dispersion and organization in polymer matrices, and finding new functionalities for polymers.

According to Dr. Masaya Kotaki, general manager of KMR, strengthening the existing relationship between Sue and Kaneka was the primary reason for establishing KMR in College Station. That, combined with PTC's facilities and capabilities, as well as Texas A&M University's proximity to Kaneka's United States headquarters in Pasadena, Texas, made College Station an ideal location for their research and development.

"We have many projects," Kotaki said. "We need equipment, we need people to train to teach the things that we're working on, and everything we need is on campus. The people, the information and the equipment are here. This is a perfect place for us. Texas A&M does a very good job of training students and researchers."

Today, a little more than two years in, the two sides agree that their partnership has been a tremendous success. Kotaki said KMR started with just two researchers in College Station, and are now up to 10. He added that this is just the beginning.

"We definitely want to maintain and improve our relationship with the Polymer Technology Center," he said. "At this moment, we have a few researchers, and we would like to increase the number in that agreement. We want to work on many different topics with different professors. That's the future plan we have."

For Kaneka, the advantage of working with TEES and Texas A&M is the ability to utilize the university's personnel and facilities.

For PTC, one benefit of collaborating with a company such as Kaneka is the ability to commercialize research. Sue said the partnership has worked better than he possibly could have hoped for.

"It is as good as you can dream of as a professor," he said. "You have your research being appreciated by a company, and it's being turned into products and sold globally, and you're a member of that contribution team. That really allows us to go beyond what we could have done by doing it ourselves.

"When you begin to team up with people in the business world, you realize that research is only one factor of success. Without this experience, I wouldn't appreciate how important it is to market and sell, and what kind of information you need to provide in order to succeed."

The collaboration between Kaneka and PTC has resulted in several patents, and Sue also uses the partnership as an example to students about how research can be used to contribute to a company, and how those contributions can make their way into the real world.

Kaneka has provided \$20,000 in scholarships to Texas A&M students annually through PTC in the last three years, and has hired several Texas A&M graduates.

Sue emphasizes that the partnership goes beyond the financials and serves as an example of how to conduct research and business.

"Early on in our partnership, I was very clear about our research, including the pros and cons, and advantages and disadvantages of what we do," Sue said. "Once you make it clear to your sponsors, and you get that trust, then everything that follows becomes easy. I think that's one reason that we've been able to work with Kaneka so well, and something we can all learn from."

Sue said another benefit of this type of partnership is that it allows for fundamental research.

"This kind of funding allows us to do long-term, critical research," he said. "We don't have to look at everything short term as an immediate product or immediate result. That kind of relationship allows us to do the best quality research we can."

Kotaki also believes that one of the biggest advantages of the partnership is simply the environment. Working in a collegiate setting allows for what could be described as competitive collaboration.

"I like the environment of a university; it's very different," he said. "I think this environment is good for us. We can be very competitive. Professors at universities work hard on fundamental research. They collaborate, but they also compete, so this kind of environment is very important for us."

Kaneka's Executive Administrators

2

Lutkenhaus Engineers Sustainable, Water-Based Thin Films

Imagine a cake as large as a billionth of a meter or nanometer. You may end up with a disaster if the layers of frosting are too warm or not spread with precision. The precision, properties and fundamental structure of each layer of frosting would be difficult to measure, much less see or weigh.

Associate Prof. Jodie Lutkenhaus Chemical Engineering

Thin film coatings are the layers of frosting in industrial applications across multiple manufacturing sectors. Environmentally sustainable, water-based, solvent-free thin film coatings are the future of high-performance materials.

Dr. Jodie Lutkenhaus, associate professor and William and Ruth Neely Faculty Fellow in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has received a \$405,000 grant from the National Science Foundation to research ultra-thin films of polymers containing bound ions, known as 'polyelectrolytes'.

Lutkenhaus' Organic Thin Films and Nanostructures Lab seeks to evaluate the 'glassmelt' or softening transition of these films using a suite of analytical techniques that will probe it on a molecular level. If successful, this project will shed new light on the role of water and salt in the thermal transition.

The nanocomposite coating is a thin film of polyelectrolyte multilayers or "layer-by-layer assembly" of desired material. Such coatings are commonly used in solar cells, optic and antibacterial, biomedical and temperature-responsive materials. Common layer-by-layer assemblies are made by processing by immersion, spinning spraying, electromagnetic or fluidic deposition of desired material on a variety of application surfaces.

"Any application you can dream of for these coatings, I assure you someone has tried it," said Lutkenhaus. "At one point, researchers were talking about depositing it into hair as a beauty product."

Although thin films have been developed for a while, their exact structure is still not known. This project places a unique emphasis on salt type, where a broad range of salts with varying size, charge and water interactions is examined. Lutkenhaus seeks to investigate the unified relationship between temperature, water and salt as it governs the transition of the thin films.

"This will be of significant importance because this new knowledge will allow fine-tuning of the transition temperature and the physical properties associated with these materials, ultimately leading to possible new advanced applications," said Lutkenhaus.

She explained the phenomenon of thin film glass transitions on a macroscopic scale with an example of a rubber ball. She demonstrated how the ball when dipped in liquid nitrogen solidifies and cracks when dropped on the ground. In real world applications, it is important to know if the film is rubbery or glassy. Continued fundamental research on the structure of the coatings will help Lutkenhaus engineer thin film coatings that adapt to the material to be coated.

Dr. Maria Sammalkorpi, professor of polymer chemistry from Aalto University in Finland, actively collaborates with Lutkenhaus' lab. Her molecular models explain some of the properties in thin films. Yangpu Zhang, doctoral student in the chemical engineering department, is assisting Lutkenhaus, and will be visiting Sammalkorpi for a month in Finland to conduct related research in polyelectrolyte complexes, a cousin of layer-by-layer assemblies.

Four undergraduate students in Lutkenhaus' research group are currently assisting with the research. Lutkenhaus says this research is a good platform to introduce them to lab research as the process is water-based and therefore safe.

"You can pretty much use any material to create a thin film coating which is adaptable,

environmentally safe and stimuliresponsive," said Lutkenhaus. "These coatings are so versatile, the consumer wouldn't and shouldn't know they're there."

Molecular understanding of the structure, dynamics, and reactivity of PAEK polymers

High-performance polymers and nanocomposites that can withstand increasingly harsh environments are a critical component of today's emerging energy and infrastructure developments and equally essential in biomedical, aerospace, and telecommunications fields. The general features of superior mechanical strength, corrosion resistance and high service temperatures make the polyaryletherketone (PAEK) family of semi-crystalline thermoplastics, along with polyphenylsulfones and polyimides preferred choices in critical service environments where lifetime is a key value. For example,

Prof. Perla B. Balbuena Chemical Engineering

PAEK polymers are of great interest for extreme service environments in the oil and gas industry. These materials are often exposed to the high pressures (up to 20,000 psi) and temperatures (up to 600°F) encountered in deep geological formations, to steam, or oil-based drilling fluids, brines, or other corrosive chemical mixtures that are highly acidic, oxidizing, or caustic. Additional uses of high-performance polymers are driven by their biocompatibility properties, and include applications in orthopedic, trauma, spinal, and dental implants which have become increasingly widespread. However, both the biological response and the effects of complex biological environments on the structure and properties of the material are critical to these applications. Moreover, many of the problems associated with biocompatibility are related to tissue integration with the polymer surfaces, and how these solid-solid interfaces react and evolve with progressing corrosion.

Elucidating the mechanisms of degradation and deleterious interactions with the chemical environment to which these materials are exposed to is critical in developing more robust and longer-lived polymer structures. To enable such knowledge, molecular level chemical reaction mechanisms must be understood. Prof. Balbuena's group is using classical and quantum molecular dynamics simulations to understand the interactions of polyether ether ketone (PEEK) polymers with water and acid solutions. Chemical Engineering undergraduate student Leonardo Gonzalez is currently analyzing the detailed molecular level behavior of PEEK surfaces in contact with water and acid aqueous solutions at high temperatures and pressures as found in deep water

Sue receives Lloyd's Register Foundation Grant

Dr. Hung-Jue Sue received the Lloyd's Register Foundation research grant to explore the potential of copper/carbon nanotube metal matrix composites in the fabrication of electrically conductive materials with enhanced properties for use in subsea power transmission applications. National University of Singapore, University of Cambridge, Institute of Occupational Safety in Scotland, Kaneka Corporation, and Texas A&M University are jointly conducting this research.

Prof. Hung-Jue Sue Department of Materials Science and Engineering

TRIFUSION

E

POLYMER TECHNOLOGY CENTER

Texas A&M engineering graduate students' startup wins 2016 Rice Business Plan Competition

A student team from Texas A&M University, led by engineering Ph.D. students Blake Teipel and Charles "Brandon" Sweeney won the grand prize at the Rice Business Plan Competition for its startup company TriFusion Devices. The startup has

developed customizable, 3-D printed prosthetic leg devices that can be manufactured in hours instead of weeks, and would cost far less than anything on the market.

IKES

Full story: http://goo.gl/UilC1w

TriFusion as a team have landed the following wins:

- ◆ First place winner of the 2016 Rice Business Plan Competition for startup company: TriFusion Devices
- First place winner of the 2016 Baylor New Ventures Competition for startup company: TriFusion Devices
- First place winner of the 2015 Southeastern Conference (SEC) Symposium's inaugural Student Entrepreneurial Pitch Competition in Atlanta for business TriFusion Materials
- Awarded first place winner of the 2015 Raymond Ideas Challenge at Texas A&M University for business plan pitch titled: "Customizable Prostheses via 3D Printing"

CONGRATULATIONS

Student innovations highlight 2016 Engineering Project Showcase

The work of more than 700 students was represented at the Engineering Project showcase on April 29th in the Hall of Champions at Texas A&M University's Kyle Field.

The Engineering Project Showcase provides students an opportunity to demonstrate and display their engineering projects highlighting the ingenuity of engineers solving real-world problems.

Full story: https://goo.gl/UVcePR

PTC Graduate Assistant Research, Dr. Peng Liu

Our congratulations to Dr. Peng Liu for receiving his Ph.D. degree from the Department of Mechanical Engineering at Texas A&M University. Under the guidance of Dr. Hung-Jue Sue, Peng Liu has been conducting research on the development of innovative polymeric materials for engineering applications and quantitatively predicting the behavior of these materials, particularly the mechanical performance. His research in recent years focused on the development of

polyaryletherketone (PAEK) polymers aimed at obtaining properties that will lead to further expansion into new application areas. The lightweight, high-strength PAEK-based material is an essential enabling technology for many engineering applications. During his Ph.D. studies, he has published several papers in high-quality journals related to the field of polymer science. After graduation, Dr. Liu will be working at Oak Ridge National Laboratory. His research there will be related to large scale rapid processing of high-performance thermoplastics by using additive manufacturing techniques (3D printing). He will be able to use the knowledge and experience gained during his time at Texas A&M to contribute to the research on this technology that can revolutionize the way products are designed and built.

PTC Graduate Assistant Research, Dr. Kevin Laux

Kevin will be graduating with a Ph.D. in Mechanical Engineering in August 2016. He joined Dr. Sue's research group in August 2012. Kevin is originally from Chicago, IL, and completed a B.S. in Mechanical Engineering from the University of Illinois in 2006 and M.S. in Mechanical Engineering

from Texas A&M in 2012. His research has involved the fundamental study of friction and wear in high-performance polyaryletherketone (PAEK) thermoplastics as a part of the APPEAL consortium. Following graduation he will work as materials development engineer for Kuraray in Pasadena, TX.

PTC's Postdoctoral Research Associate Dr. Hongfeng Wang

Dr. Hongfeng Wang developed his interest in Materials Science & Engineering when he was pursuing his B.S. degree in Tongji University (China). In 2007, he received a European Erasmus Mundus scholarship and joined a 2-year International FAME Master Program (Functionalized

Advanced Materials and Engineering, FP6 framework proram). The first year of the program, he was in Universität Augsburg (Germany) focused on material physics and the second year in Université de Bordeaux 1 (France) focused on material chemistry. In 2012, he received his Ph.D. degree from Université de Bordeaux 1 (ICMCB-CNRS) on physical chemistry of molecular materials. Before joining Dr. Sue's group, he worked for a joint postdoctoral project in both University of Tennessee and Wuhan National Laboratory for Optoelectronics (China). He joined Professor Sue's group in 2015 as a Postdoctoral Research Associate. His research focuses on the understanding of nanoplatelet self-assembly behavior.

PTC POLYMER TECHNOLOGY CENTER TEXAS A&M ENGINEERING EXPERIMENT STATION Phone: Verballe :: http://dc.tamu.edu

4

SPRING 2016 SPE and Kaneka scholarship recipients

Our congratulations goes out to the following students and faculty for being selected the SPE and Kaneka scholarship/award recipients for Spring 2016.

Left to right: Jeniree Flores, CHEM; Thomas Malinski, CHEM; Dr. David Hansen, SPE Liason; Natalie Benner, MSEN; and Mary Layne Harrell, CHEM

Kguekg

Mr. Steve Skarke, Kaneka Vice President, presenting the Kaneka Junior Faculty Award to Dr. Hung-Jen Wu, Chemical Engineering

Left to right: Chih-Gang Chao, CHEM; Shin Hye Ahn, CHEM; Mr. Steve Skarke, KANEKA Vice President; Minxiang Zeng, CHEM; and Yanpu Zhang, CHEM

SPE Student Chapter Officers for 2016-2017

President	Mary Layne Harrell	mary.layne.harrell@tamu.edu
VP Science	Shin Hye Ahn (Grace)	shin-hye.ahn@mail.chem.tamu.edu
VP Engineering	Xun He	xun.he@mail.chem.tamu.edu
Treasurer	Kevin Wacker	kevin.wacker@chem.tamu.edu
Secretary	Simcha Felder	simcha.felder@chem.tamu.edu
Publicity Coordinator	Mohammed Haque	myhaque123@tamu.edu
Activities Coordinator	Yanyan Wang	yywang73ok@gmai.com
Social Media Coordinator	Yi-Yun Tsao (Tim)	yi-yun.tsao@chem.tamu.edu

Please contact any of these officers should any questions arise regarding SPE membership/events, etc.

Polymer Technology Industrial Consortium (PTIC) Student Poster Session

APRIL 7-8, 2016				
	Student Name	Student Poster Title		
1	Kevin Laux	"The Influence of Frictional Heating on The Tribological and Wear Behavior of PEEK"		
2	Joseph Baker	"Zinc Bromide Concentration Effects on PEEK Degradation Under HP/HT Conditions"		
3	Jeniree Flores	"Versatile Magnetically-active Hybrid Networks (MHNs): From crude oil remediation to Pickering Emulsifiers"		

CONGRATULATIONS

PTC Faculty Members				
Name	E-mail Address	Office #		
Mustafa Akbulut	makbulut@tamu.edu	979-847-8766		
Perla Balbuena	balbuena@tamu.edu	979-845-3375		
Dave Bergbreiter	bergbreiter@tamu.edu	979-845-3437		
Janet Bluemel	bluemel@tamu.edu	979-845-7749		
Tahir Cagin	cagin@tamu.edu	979-862-1449		
Homero Castaneda	hcastaneda@tamu.edu	979-458-9844		
Elena Castell-Perez	ecastell@tamu.edu	979-862-7645		
Zheng D. Cheng	zcheng@tamu.edu	979-845-3413		
Abraham Clearfield	a-clearfield@tamu.edu	979-845-2936		
Terry Creasy	tcreasy@tamu.edu	979-458-0118		
Donald Darensbourg	d-darensbourg@tamu.edu	979-845-5417		
Yossef Elabd	elabd@tamu.edu	979-845-7506		
Lei Fang	fang@chem.tamu.edu	979-845-3186		
Carmen Gomes	carmen@tamu.edu	979-845-2455		
Micah Green	micah.green@tamu.edu	979-862-1588		
Melissa A. Grunlan	mgrunlan@tamu.edu	979-845-2406		
Wayne Hung	hung@tamu.edu	979-845-4989		
Helen Liang	hliang@tamu.edu	979-862-2623		
Jodie Lutkenhaus	jodie.lutkenhaus@tamu.edu	979-845-3361		
Anastasia Muliana	amuliana@tamu.edu	979-458-3579		
Mohammad Naraghi	naraghi@aero.tamu.edu	979-862-3323		
K.R. Rajagopal	krajagopal@tamu.edu	979-862-4552		
Hung-Jue Sue	hjsue@tamu.edu	979-845-5024		
Steve Suh	ssuh@tamu.edu	979-845-1417		
Svetlana A. Sukhishvili	svetlana@tamu.edu	979-458-9840		
Jyhwen Wang	jwang@tamu.edu	979-845-4903		
John Whitcomb	whit@aero.tamu.edu	979-845-4006		
Karen L. Wooley	wooley@tamu.edu	979-845-4077		

Polymer Specialty Certificate Updates

Students that have applied for the Polymer Specialty Certificate56Students that have received the Polymer Specialty Certificate39

For more information, please visit: http://ptc.tamu.edu/certificate.html

POLYMER TECHNOLOGY CENTER

TEXAS A&M ENGINEERING EXPERIMENT STATION Phone: (979) 458-0918 Website: http://ptc.tamu.edu

Have Questions?

Dr. Hung-Jue Sue	Isabel Cantu
PTC Director	E-mail: icantu@tamu.ed
E-mail: hjsue@tamu.edu	Phone: 979-458-0918

PTC newsletter prepared by: Isabel Cantu edited by: Megan Nicholson & Zachary Thornburg

5