Melissa A. Grunlan

Professor - Biomedical Engineering

Holder of the Charles H. and Bettye Barclay Professorship in Engineering

Presidential Impact Fellow

Contact Information

Phone: (979)-845-2406

Fax: (979)-845-4450

E-mail: mgrunlan@tamu.edu

Departmental Page

Education

  • Ph.D. 2004, Chemistry, University of Southern California
  • M.S. 1997, Polymers and Coatings, North Dakota State University
  • B.S. 1995, Chemistry, North Dakota State University

Research Interests

Design of novel silicon-based polymeric materials with molecular control to improve performance in applications, including: blood-compatible coatings, biosensor membranes, tissue engineering scaffolds, and shape memory polymer devices.

Experience

  • 2005 – Present           Assistant Professor, Department of Biomedical Engineering, Texas A&M University
  • 2004 – 2005                Post-doctoral Research Associate, Department of Chemistry, Texas A&M University
  • 2002 – 2004                Research Assistant, Department of Chemistry, University of Southern California
  • 1997 – 2001                Senior Chemist, H.B. Fuller Company
  • 1996 – 1997                Research Assistant, Department of Polymers & Coatings, North Dakota State University
  • 1993 – 1994                Undergraduate Research Assistant, Department of Chemistry, North Dakota State University
  • 1993                            Undergraduate Research Assistant, Department of Chemistry, North Dakota State University
  • 1974 – 1978                CONICET Graduate Fellow, INTEC, Santa Fe, Argentina

Publications

  • Means, A.K.*; Dong, P.*; Clubb, Jr, F.J.; Friedemann, M.C.; Colvin, L.E.; Shrode, C.A.**; Coté, G.L; Grunlan, M.A.+ “Thermoresponsive, self‐cleaning double network hydrogels exhibit reduced foreign body reaction and superior mechanical properties over PEG,” J. Mater. Sci. Mater. Med. 2019, 30, 79.
  • Means, A.K.*; Grunlan, M.A.+ “Modern strategies to achieve tissue‐mimetic, mechanically robust hydrogels,” ACS Macro Lett., 2019, 8, 705‐713.
  • Means, A.K.*; Shrode, C.A.**; Whitney, L.V.**; Ehrhardt, D.A.;** Grunlan, M.A.+ “Double network hydrogels that mimic the modulus, strength and lubricity of cartilage,” Biomacromolecules, 2019, 20, 2034‐2042
  • Zouaghi, S.; Frémiot, J.; André, C.; Grunlan, M.A.; Gruescu, C.; Delaplace, G.; Duquesne, S.; Jimenez, M.+ “Investigating the effect of an antifouling surface modification on the environmental impact of pasteurization process: An LCA study,” ACS Sustainable Chem. Eng., 2019, 7, 9133‐9142.
  • Ngo, B.K.D.*; Lim, K.K.**; Stafslien, S.J.; Grunlan, M.A.+ “Stability of silicones modified with PEO‐silane amphiphiles: Impact of structure and concentration, Polym. Degrad. Stab., 2019, 163, 136‐142.
  • Woodard, L.N.;* Grunlan, M.A.+ “Hydrolytic degradation of PCL‐PLLA semi‐IPNs exhibiting rapid, tunable degradation,” ACS Biomater. Sci. Eng., 2019, 5, 498‐508.
  • Diaz‐Rodriguez, P.; Erndt‐Marino, J.; Munoz‐Pinto, D.J.; Samavedi, S.; Beardon, R.; Grunlan, M.A.; Saunders, W.; Hahn, M.S.+ “Toward zonally‐tailored scaffolds for osteochondral differentiation of synovial mesenchymal stem cells,” J. Biomed. Mater. Res. Part B: Appl. Biomat., 2019, 107B, 2019‐2029.
  • Locke, A.K.; Means, A.K.*; Dong, P.*; Nichols, T.J.; Coté, G.L.; Grunlan, M.A.+ “A layer‐by‐layer (LbL) approach to retain an optical glucose sensing assay within the cavity of a hydrogel membrane,” ACS Applied Bio Mater., 2018, 1, 1319‐1327. (ACS Editors’ Choice Selection)
  • Abraham, A.A.(*); Means, A.K.*; Clubb, Jr, F.J.; Fei, R.*; Locke, A.K.; Gacasan, E.G.**; Coté, G.L; Grunlan, M.A.+ “Foreign body reaction to a subcutaneously implanted self‐cleaning, thermoresponsive hydrogel membrane for implanted glucose biosensors,” ACS Biomater. Sci. Eng., 2018, 4, 4104‐4111.
  • Zouaghi, S.; Barry, M.E.**; Bellayer, S.; Lyskawa, J.; André, C.; Delaplace, G.; Grunlan, M.A.+; Jimenez, M.+ “Antifouling amphiphilic silicone coatings for dairy fouling mitigation on stainless steel,” Biofouling, 2018, 34, 769‐783.
  • Woodard, L.N.;* Grunlan, M.A.+; “Hydrolytic degradation and erosion of polyester biomaterials,” ACS Macro Lett., 2018, 7, 976‐982.
  • Gharat, T.P.; Diaz‐Rodriguez, P.; Erndt‐Marino, J.D.; Jimenez Vergara, A.C.; Munoz Pinto, D.J.; Beardon, R.N.; Huggins, S.S.; Grunlan, M.; Saunders, W.B.; Hahn, M.S.+ “A canine in vitro model for evaluation of marrow‐derived mesenchymal stromal cell‐based bone scaffolds,” J. Biomed. Mater. Res. Part A, 2018, 106, 2382‐2393.
  • Woodard, L.N.*; Kmetz, K.T.**; Roth, A.A.**; Page, V.M.**; Grunlan, M.A.+ “Porous poly(ε-caprolactone)-poly(L-lactic acid) semi-interpenetrating networks as superior, defect-specific scaffolds with potential for cranial bone defect repair,” Biomacromolecules, 2017, 18, 4075-4083.
  • Means, A.K.*; Ehrhardt, D.A.**; Whitney, L.V.**; Grunlan, M.A.+ “Thermoresponsive double network hydrogels with exceptional mechanical properties,” Macromol. Rapid Comm., 2017, 38, 1700351-1700357.
  • Ngo, B.K.D.*; Grunlan, M.A.+ “Protein resistant polymeric biomaterials,” ACS Macro Lett., 2017, 6, 992-1000.
  • Hawkins, M.L.#; Schott, S.S.**; Grigoryan, B.**; Rufin, M.A.*; Ngo, B.K.D.*; Vanderwal, L.; Stafslien, S.J.; Grunlan, M.A.+ “Anti-protein and anti-bacterial behavior of amphiphilic silicones,” Polym. Chem., 2017, 8, 5239-5251.
  • Gacasan, E.G**; Sehnert, R.M.**; Ehrhardt, D.A.**; Grunlan, M.A. + “Templated, macroporous PEG-DA hydrogels as tissue engineering scaffolds,” Macromol. Mater. Eng., 2017, 302, 16000512 – 16000518.
  • Rufin, M.A.*; Ngo, B.K.D.*; Barry, M.E.**; Page, V.M.**; Hawkins, M.L.# ; Stafslien, S.J.; Grunlan, M.A. +“Antifouling silicones based on surface-modifying additive (SMA) amphiphiles,” Green Mater., 2017, 5, 4-13.
  • Woodard, L.N.*; Page, V.M.**; Kmetz, K.T.**; Grunlan, M.A. + “PCL-PLLA semi-IPN shape memory polymers (SMPs): Degradation and mechanical properties,” Macromol. Rapid Comm., 2016, 37, 1972-1977.
  • Rufin, M.A.*; Barry, M.E.**; Adair, P.A.**; Hawkins, M.L.#; Raymond, J.E.; Grunlan, M.A..+ “Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration in silicone,” Acta Biomaterialia, 2016, 41, 247-252.
  • Fei, R.*, Means, A.K.*, Abraham, A.A.(*); Locke, A.K.; Coté; G.L.; Grunlan, M.A..+ “Self-cleaning, thermoresponsive P(NIPAAm-co-AMPS) double network membranes for implanted glucose biosensors,” Macromol. Mater. Eng., 2016, 301, 935-943.
  • Faÿ, F.; Hawkins, M.L.#; Réhel, K.; Grunlan, M.A.+; Linossier, I.+ “Non-toxic, anti-fouling silicones with variable PEO-silane amphiphiles content,” Green Mater., 2016, 4, 53-62.
  • Erndt-Marino, J.D.; Munoz-Pinto, D.J.; Samavedi, S.; Jimenez-Vergara, A.C.; Woodard, L.*; Zhang, D.*; Grunlan, M.A..; Hahn, M.S.+ “Evaluation of the osteoinductive capacity of polydopamine-coated poly(ε-caprolactone) diacrylate shape memory foams,” ACS Biomat. Sci. Eng., 2015, 1, 1220-1230.
  • Nail, L.N.*; Zhang, D.*; Reinhard, J.**; Grunlan, M.A..+ “Fabrication of a bioactive, PCL-based ‘self-fitting’ shape memory polymer scaffold,” J. of Visualized Experiments (JOVE), 2015, 104, e52981.
  • Rufin, M.A.*; Gruetzner, J.A.**; Hurley, M.J.**; Hawkins, M.L.*; Raymond, E.S.; Raymond, J.E.; Grunlan, M.A..+ “Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length,” J. Mater. Chem. B. 2015, 3, 2816-2825.
  • Yu, Y.-J.; Infanger, S.; Grunlan, M.A.; Maitland, D.J.+ “Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites,” J. Appl. Polym. Sci. 2015, 132, 41226-41234.