
Melissa A. Grunlan
Professor - Biomedical Engineering
Holder of the Charles H. and Bettye Barclay Professorship in Engineering
Texas A&M University Presidential Impact Fellow
Texas A&M University Chancellor EDGES Fellow
Contact Information
Phone: (979)-845-2406
Fax: (979)-845-4450
E-mail: mgrunlan@tamu.edu
Experience
- 2020 – Present Associate Department Head, Dept. of Biomedical Engineering, Texas A&M University
- 2019 – 2020 Research Director, Dept. of Biomedical Engineering, Texas A&M University
- 2017 – Present Professor, Texas A&M University, Dept. of Biomedical Engineering, Dept. of Materials Science & Engineering (courtesy( Dept. of Chemistry (courtesy(, Texas A&M University
- 2017 – 2019 Deputy Director, NSF ERC "PATHS-UP"
- 2013 – 2017 Director of Undergraduate of Programs, Dept. of Biomedical Engineering, Texas A&M University
- 2011 – 2017 Associate Professor, Dept. of Biomedical Engineering, Dept. of Materials Science & Engineering (courtesy), Texas A&M University
- 2005 – 2011 Assistant Professor, Department of Biomedical Engineering, Texas A&M University
- 2004 – 2005 Post-doctoral Research Associate, Department of Chemistry, Texas A&M University
- 2002 – 2004 Research Assistant, Department of Chemistry, University of Southern California
- 1997 – 2001 Senior Chemist, H.B. Fuller Company
- 1996 – 1997 Research Assistant, Department of Polymers & Coatings, North Dakota State University
- 1993 – 1994 Undergraduate Research Assistant, Department of Chemistry, North Dakota State University
- 1993 Undergraduate Research Assistant, Department of Chemistry, North Dakota State University
- 1974 – 1978 CONICET Graduate Fellow, INTEC, Santa Fe, Argentina
Education
- 2004 Ph.D., Chemistry, University of Southern California
- 1997 M.S., Polymers and Coatings, North Dakota State University
- 1995 B.S., Chemistry, North Dakota State University
Research Interests
Design of novel silicon-based polymeric materials with molecular control to improve performance in applications, including: blood-compatible coatings, biosensor membranes, tissue engineering scaffolds, and shape memory polymer devices.
Publications
- Dong, P.*; Singh, K.A.; Soltes, A.M.**; Ko, B.K.; Gahararwar, A.K.; McShane, M.J.; Grunlan, M.A.+ “Silicone-containing thermoresponsive membranes to form an optical glucose biosensor,” J. Mater. Chem. B, 2022, 10, 6118-6132.
- Yang, F.; Kazi, A.; Marmo, A.C.*; Grunlan, M.A.; Tai, B.L.+ “Characterizing the separation behavior of photocurable PDMS on a hydrogel film during VAT photopolymerization: A benchmark study,” Additive Manuf. 2022, 58, 103070.
- Marmo, A.C.*; Rodriguez Cruz, J.J.**; Pickett, J.H.**; Lott, L.R.**; Theibert, D.S.; Chandler, H.; Grunlan, M.A.+ “Amphiphilic silicones to mitigate lens epithelial cell growth onto intraocular lenses,” J. Mater. Chem. B, 2022, 10, 3064-3072.
- Dong, P.*; Ko, B.K.; Lomeli, K.A.**, Clark, E.C.**; McShane, M.J.; Grunlan, M.A.+ “A glucose biosensor based on phosphorescence lifetime sensing and a thermoresponsive membrane,” Macromol. Rapid Comm., 2022, 2100902.
- Stukel Shah, J.M.; Lundquist, B.; Macaitis, J.; Pfau-Cloud, M.R.*; Beltran, F.O.*; Grunlan, M.A.; Lien, W.; Wang, H.-C.; Burdette, A.J.+ “Comparative evaluation of mesenchymal stromal cell growth and osteogenic differentiation on a shape memory polymer scaffold,” J. Biomed. Maters. Res. Part B, 2022, 1-22.
- Jenkins, D.; Salhadar, K.; Ashby, G.; Misha, A.; Cheshire, J.; Beltran, F.*; Grunlan, M.A.; Andrieux, S.; Stubenrauch, C.; Cosgriff-Hernandez, E.+ “PoreScript: Semi-automated pore size algorithm for scaffold characterization,” Bioactive Mater., 2021, in press online.
- Houk, C.J.**; Beltran, F.O.*; Grunlan, M.A.+ “Suitability of EtO sterilization of polydopamine-coated, self-fitting bone scaffolds,” Polym. Degrad. Stability, 2021, 194, 109763.
86. Pfau, M.R.*; Beltran, F.O.**; Woodard, L.N.**; Saunders, W.B.; Dobson, L.K.; Gasson, S.B.; Moreno, M.R.; Robbins, A.; Lawson, Z.T.; Grunlan, M.A.+ “Evaluation of self-fitting, shape memory polymer scaffolds in a rabbit calvarial defect model,” Acta Biomaterialia, 2021, 136, 233-242. - Lawson, Z.T.+; Han, J.; Saunders, W.B.; Grunlan, M.A.; Moreno, M.R.; Robbins, A.B. “Methodology for performing biomechanical push-out tests for evaluating the osseointegration of calvarial defect repair in small animal models,” MethodsX, 2021, 8, 101541.
- Arabiyat, A.A.&; Pfau, M.R.*&; Grunlan, M.A.; Hahn, M.S.+ “Intrinsic osteoinductivity of PCL-DA/PLLA semi-IPN shape memory polymer scaffolds,” J. Biomed. Mater. Res. Part A, 2021, 21, 2334-2345. (&equal contributions)
- Dogbevi, K.S.; Ngo, B.K.D.*; Branan, K.L.; Gibbens, A.M.; Grunlan, M.A.; Coté, G.L.+ “A thin whole blood smear prepared via a pumpless microfluidic,” Microfluid. Nanofluid., 2021, 25, 59.
- Pfau, M.A.*; Grunlan, M.A.+ “Smart scaffolds: Shape memory polymers (SMPs) in tissue engineering,” J. Mater. Chem. B, 2021, 9, 4287-4297.
- Dogbevi, K.S.; Ngo, B.K.D.*; Branan, K.L.; Gibbens, A.M.; Grunlan, M.A.; Coté, G.L.+ “Brightfield and fluorescence in-channel staining of thin blood smears generated in pumpless microfluidic,” Anal. Methods, 2021, 13, 2238-2247.
- Pfau, M.A.*; McKinzey, K.G.**; Roth, A.A.**; Graul, L.M.; Maitland, D.J.; Grunlan, M.A.+ “Shape memory polymer (SMP) bone scaffolds with improved self-fitting properties,” J. Mater. Chem. B, 2021, 9, 3286-3837.
- Suriboot, J.#; Marmo, A.C.*; Ngo, B.K.D.*; Nigam, A.; Ortiz-Acosta, D.; Tai, B.L.; Grunlan, M.A.+ “Amphiphilic, thixotropic additives for extrusion-based 3D printing of silica-reinforced silicone,” Soft Matter, 2021, 17, 4133-4142.
- Beltran, F.O.*; Houk, C.J.**; Grunlan, M.A.+ “Bioactive siloxane-containing shape memory polymer (SMP) scaffolds with tunable degradation rates,” ACS Biomater. Sci. Eng. 2021, 7, 1631-1639.
- Bonyadi, S.; Demott, C.J.*; Grunlan, M.A.; Dunn, A.C.+ “Cartilage-like tribological performance of charged double network hydrogels,” J. Mech. Behav. Biomed. Mater. 2021, 114, 104202.
- Quiñones-Pérez, M.; Cieza, R.; Ngo, B.K.D.*; Grunlan, M.A.; Domenech, M.+ “Amphiphilic silicones to reduce the absorption of small hydrophobic molecules,” Acta Biomaterialia, 2021, 121, 339-348.
- Frassica, M.T.*; Jones, S.K.**; Suriboot, J.#; Arabiyat, A.; Ramirez, E.**; Hahn, M.S.; Grunlan, M.A.+ “Enhanced osteogenic potential of phosphonated-siloxane hydrogel scaffolds,” Biomacromolecules, 2020, 21, 5189-5199.
- Frassica, M.T.*; Demott, C.J.*; Ramirez, E.M.**; Grunlan, M.A.+ “Spatially controlled templated hydrogels for orthopedic interface regeneration,” ACS Macro Lett. 2020, 9, 1740-1744.
- Dong, P.*; Schott, B.J.**; Means, A.K.*; Grunlan, M.A.+ “A comb architecture to control the selective diffusivity of a double network hydrogel,” ACS Appl. Polym. Mater. 2020, 2, 5269–5277
- Ngo, B.K.D.*; Lim, K.K.**; Johnson, J.C.**; Jain, A.; Grunlan, M.A.+ “Thromboresistance of polyurethanes modified with PEO-silane amphiphiles,” Macromol. Biosci. 2020, 2000193.
- Frassica, M.T.*; Grunlan, M.A.+ “Perspectives on synthetic materials to guide tissue regeneration for osteochondral defect repair,” ACS Biomater. Sci. Eng., 2020, 6, 4324-4336. (ACS Editor’s Choice; Cover)
- Kim, D.S.; Suriboot, J.;# Grunlan, M.A.; Tai, B.L.+ “Mechanical isotropy and post-cure shrinkage of polydimethylsiloxane printed with digital light processing,” Rapid Prototyping J. 2020, 26, 1447-1452.
- Pfau, M.R.*; McKinzey, K.G.**; Roth, A.A**; Grunlan, M.A.+ “PCL-based shape memory polymer (SMP) semi-IPNs: The role of miscibility in tuning degradation rate,” Biomacromolecules, 2020, 6, 2493-2501.
- Dogbevi, K.S.; Ngo, B.K.D.*; Blake, C.W.; Grunlan, M.A.+; Coté, G.L. “Pumpless, ‘self-driven’ microfluidic channels with controlled blood flow using an amphiphilic silicone,” ACS Appl. Polymer. Mater. 2020, 2, 1731-1738.
- Ngo, B.K.D.*; Barry, M.E.**; Lim, K.K.**; Johnson, J.C.**; Luna, D.J.; Pandian, N.K.R.; Jain, A.; Grunlan, M.A.+ “Thromboresistance of silicones modified with PEO-silane amphiphiles,” ACS Biomater. Sci. Eng., 2020, 6, 2029-2037.
- Frassica, M.T.*; Jones, S.K.**; Diaz-Rodriguez, P.; Hahn, M.S.; Grunlan, M.A.+ “Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity,” Acta Biomaterialia, 2019, 99, 100-109.
- Kim, D.S.; Suriboot, J.;# Grunlan, M.A.; Tai, B.L.+ “Feasibility study of silicone stereolithography with an optically created dead zone,” Addit. Manuf., 2019, 29, 100793.
- Means, A.K.*; Dong, P.*; Clubb, Jr, F.J.; Friedemann, M.C.; Colvin, L.E.; Shrode, C.A.**; Coté, G.L; Grunlan, M.A.+ “Thermoresponsive, self‐cleaning double network hydrogels exhibit reduced foreign body reaction and superior mechanical properties over PEG,” J. Mater. Sci. Mater. Med. 2019, 30, 79.
- Means, A.K.*; Grunlan, M.A.+ “Modern strategies to achieve tissue‐mimetic, mechanically robust hydrogels,” ACS Macro Lett., 2019, 8, 705‐713.
- Means, A.K.*; Shrode, C.A.**; Whitney, L.V.**; Ehrhardt, D.A.;** Grunlan, M.A.+ “Double network hydrogels that mimic the modulus, strength and lubricity of cartilage,” Biomacromolecules, 2019, 20, 2034‐2042.
- Zouaghi, S.; Frémiot, J.; André, C.; Grunlan, M.A.; Gruescu, C.; Delaplace, G.; Duquesne, S.; Jimenez, M.+ “Investigating the effect of an antifouling surface modification on the environmental impact of pasteurization process: An LCA study,” ACS Sustainable Chem. Eng., 2019, 7, 9133‐9142.
- Ngo, B.K.D.*; Lim, K.K.**; Stafslien, S.J.; Grunlan, M.A.+ “Stability of silicones modified with PEO‐silane amphiphiles: Impact of structure and concentration, Polym. Degrad. Stab., 2019, 163, 136‐142.
- Woodard, L.N.;* Grunlan, M.A.+ “Hydrolytic degradation of PCL‐PLLA semi‐IPNs exhibiting rapid, tunable degradation,” ACS Biomater. Sci. Eng., 2019, 5, 498‐508.
- Diaz‐Rodriguez, P.; Erndt‐Marino, J.; Munoz‐Pinto, D.J.; Samavedi, S.; Beardon, R.; Grunlan, M.A.; Saunders, W.; Hahn, M.S.+ “Toward zonally‐tailored scaffolds for osteochondral differentiation of synovial mesenchymal stem cells,” J. Biomed. Mater. Res. Part B: Appl. Biomat., 2019, 107B, 2019‐2029.
- Locke, A.K.; Means, A.K.*; Dong, P.*; Nichols, T.J.; Coté, G.L.; Grunlan, M.A.+ “A layer‐by‐layer (LbL) approach to retain an optical glucose sensing assay within the cavity of a hydrogel membrane,” ACS Applied Bio Mater., 2018, 1, 1319‐1327. (ACS Editors’ Choice Selection)
- Abraham, A.A.(*); Means, A.K.*; Clubb, Jr, F.J.; Fei, R.*; Locke, A.K.; Gacasan, E.G.**; Coté, G.L; Grunlan, M.A.+ “Foreign body reaction to a subcutaneously implanted self‐cleaning, thermoresponsive hydrogel membrane for implanted glucose biosensors,” ACS Biomater. Sci. Eng., 2018, 4, 4104‐4111.
- Zouaghi, S.; Barry, M.E.**; Bellayer, S.; Lyskawa, J.; André, C.; Delaplace, G.; Grunlan, M.A.+; Jimenez, M.+ “Antifouling amphiphilic silicone coatings for dairy fouling mitigation on stainless steel,” Biofouling, 2018, 34, 769‐783.
- Woodard, L.N.;* Grunlan, M.A.+; “Hydrolytic degradation and erosion of polyester biomaterials,” ACS Macro Lett., 2018, 7, 976‐982.
- Gharat, T.P.; Diaz‐Rodriguez, P.; Erndt‐Marino, J.D.; Jimenez Vergara, A.C.; Munoz Pinto, D.J.; Beardon, R.N.; Huggins, S.S.; Grunlan, M.; Saunders, W.B.; Hahn, M.S.+ “A canine in vitro model for evaluation of marrow‐derived mesenchymal stromal cell‐based bone scaffolds,” J. Biomed. Mater. Res. Part A, 2018, 106, 2382‐2393.
- Woodard, L.N.*; Kmetz, K.T.**; Roth, A.A.**; Page, V.M.**; Grunlan, M.A.+ “Porous poly(ε-caprolactone)-poly(L-lactic acid) semi-interpenetrating networks as superior, defect-specific scaffolds with potential for cranial bone defect repair,” Biomacromolecules, 2017, 18, 4075-4083.
- Means, A.K.*; Ehrhardt, D.A.**; Whitney, L.V.**; Grunlan, M.A.+ “Thermoresponsive double network hydrogels with exceptional mechanical properties,” Macromol. Rapid Comm., 2017, 38, 1700351-1700357.
- Ngo, B.K.D.*; Grunlan, M.A.+ “Protein resistant polymeric biomaterials,” ACS Macro Lett., 2017, 6, 992-1000.
- Hawkins, M.L.#; Schott, S.S.**; Grigoryan, B.**; Rufin, M.A.*; Ngo, B.K.D.*; Vanderwal, L.; Stafslien, S.J.; Grunlan, M.A.+ “Anti-protein and anti-bacterial behavior of amphiphilic silicones,” Polym. Chem., 2017, 8, 5239-5251.
- Gacasan, E.G**; Sehnert, R.M.**; Ehrhardt, D.A.**; Grunlan, M.A. + “Templated, macroporous PEG-DA hydrogels as tissue engineering scaffolds,” Macromol. Mater. Eng., 2017, 302, 16000512 – 16000518.
- Rufin, M.A.*; Ngo, B.K.D.*; Barry, M.E.**; Page, V.M.**; Hawkins, M.L.# ; Stafslien, S.J.; Grunlan, M.A. +“Antifouling silicones based on surface-modifying additive (SMA) amphiphiles,” Green Mater., 2017, 5, 4-13.
- Woodard, L.N.*; Page, V.M.**; Kmetz, K.T.**; Grunlan, M.A. + “PCL-PLLA semi-IPN shape memory polymers (SMPs): Degradation and mechanical properties,” Macromol. Rapid Comm., 2016, 37, 1972-1977.
- Rufin, M.A.*; Barry, M.E.**; Adair, P.A.**; Hawkins, M.L.#; Raymond, J.E.; Grunlan, M.A..+ “Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration in silicone,” Acta Biomaterialia, 2016, 41, 247-252.
- Fei, R.*, Means, A.K.*, Abraham, A.A.(*); Locke, A.K.; Coté; G.L.; Grunlan, M.A..+ “Self-cleaning, thermoresponsive P(NIPAAm-co-AMPS) double network membranes for implanted glucose biosensors,” Macromol. Mater. Eng., 2016, 301, 935-943.
- Faÿ, F.; Hawkins, M.L.#; Réhel, K.; Grunlan, M.A.+; Linossier, I.+ “Non-toxic, anti-fouling silicones with variable PEO-silane amphiphiles content,” Green Mater., 2016, 4, 53-62.
- Erndt-Marino, J.D.; Munoz-Pinto, D.J.; Samavedi, S.; Jimenez-Vergara, A.C.; Woodard, L.*; Zhang, D.*; Grunlan, M.A..; Hahn, M.S.+ “Evaluation of the osteoinductive capacity of polydopamine-coated poly(ε-caprolactone) diacrylate shape memory foams,” ACS Biomat. Sci. Eng., 2015, 1, 1220-1230.
- Nail, L.N.*; Zhang, D.*; Reinhard, J.**; Grunlan, M.A..+ “Fabrication of a bioactive, PCL-based ‘self-fitting’ shape memory polymer scaffold,” J. of Visualized Experiments (JOVE), 2015, 104, e52981.
- Rufin, M.A.*; Gruetzner, J.A.**; Hurley, M.J.**; Hawkins, M.L.*; Raymond, E.S.; Raymond, J.E.; Grunlan, M.A..+ “Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length,” J. Mater. Chem. B. 2015, 3, 2816-2825.
- Yu, Y.-J.; Infanger, S.; Grunlan, M.A.; Maitland, D.J.+ “Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites,” J. Appl. Polym. Sci. 2015, 132, 41226-41234.